Abstracts – Browse Results

Search or browse again.

Click on the titles below to expand the information about each abstract.
Viewing 42 results ...

Afroz, R (2020) Developing a low-carbon architecture pedagogy in Bangladesh. Buildings and Cities, 1(01), 637–49.

Andersen, C E, Kanafani, K, Zimmermann, R K, Rasmussen, F N and Birgisdóttir, H (2020) Comparison of GHG emissions from circular and conventional building components. Buildings and Cities, 1(01), 379–92.

Anderson, J and Moncaster, A (2020) Embodied carbon of concrete in buildings, Part 1: analysis of published EPD. Buildings and Cities, 1(01), 198–217.

Axon, S and Morrissey, J (2020) Just energy transitions? Social inequities, vulnerabilities and unintended consequences. Buildings and Cities, 1(01), 393–411.

Baborska-Narozny, M, Szulgowska-Zgrzywa, M, Mokrzecka, M, Chmielewska, A, Fidorow-Kaprawy, N, Stefanowicz, E, Piechurski, K and Laska, M (2020) Climate justice: air quality and transitions from solid fuel heating. Buildings and Cities, 1(01), 120–40.

Balouktsi, M (2020) Carbon metrics for cities: production and consumption implications for policies. Buildings and Cities, 1(01), 233–59.

Bordass, B (2020) Metrics for energy performance in operation: the fallacy of single indicators. Buildings and Cities, 1(01), 260–76.

Clarke, L, Sahin-Dikmen, M and Winch, C (2020) Transforming vocational education and training for nearly zero-energy building. Buildings and Cities, 1(01), 650–61.

Crawley, J, McKenna, E, Gori, V and Oreszczyn, T (2020) Creating Domestic Building Thermal Performance Ratings Using Smart Meter Data. Buildings and Cities, 1(01), 1–13.

Fawcett, T and Topouzi, M (2020) Residential retrofit in the climate emergency: the role of metrics. Buildings and Cities, 1(01), 475–90.

Francart, N, Höjer, M, Mjörnell, K, Orahim, A S, von Platten, J and Malmqvist, T (2020) Sharing indoor space: stakeholders’ perspectives and energy metrics. Buildings and Cities, 1(01), 70–85.

Frischknecht, R, Alig, M, Nathani, C, Hellmüller, P and Stolz, P (2020) Carbon footprints and reduction requirements: the Swiss real estate sector. Buildings and Cities, 1(01), 325–36.

Grant, E J (2020) Mainstreaming environmental education for architects: the need for basic literacies. Buildings and Cities, 1(01), 538–49.

Green, E, Lannon, S, Patterson, J, Variale, F and Iorwerth, H (2020) Decarbonising the Welsh housing stock: from practice to policy. Buildings and Cities, 1(01), 277–92.

Green, S D and Sergeeva, N (2020) The contested privileging of zero carbon: plausibility, persuasiveness and professionalism. Buildings and Cities, 1(01), 491–503.

Habert, G, Röck, M, Steininger, K, Lupísek, A, Birgisdottir, H, Desing, H, Chandrakumar, C, Pittau, F, Passer, A, Rovers, R, Slavkovic, K, Hollberg, A, Hoxha, E, Jusselme, T, Nault, E, Allacker, K and Lützkendorf, T (2020) Carbon budgets for buildings: harmonising temporal, spatial and sectoral dimensions. Buildings and Cities, 1(01), 429–52.

Hamstead, Z, Coseo, P, AlKhaled, S, Boamah, E F, Hondula, D M, Middel, A and Rajkovich, N (2020) Thermally resilient communities: creating a socio-technical collaborative response to extreme temperatures. Buildings and Cities, 1(01), 218–32.

Hoxha, E, Passer, A, Saade, M R M, Trigaux, D, Shuttleworth, A, Pittau, F, Allacker, K and Habert, G (2020) Biogenic carbon in buildings: a critical overview of LCA methods. Buildings and Cities, 1(01), 504–24.

Killip, G (2020) A reform agenda for UK construction education and practice. Buildings and Cities, 1(01), 525–37.

Klinsky, S and Mavrogianni, A (2020) Climate justice and the built environment. Buildings and Cities, 1(01), 412–28.

Kuittinen, M and Häkkinen, T (2020) Reduced carbon footprints of buildings: new Finnish standards and assessments. Buildings and Cities, 1(01), 182–97.

Lützkendorf, T (2020) The role of carbon metrics in supporting built-environment professionals. Buildings and Cities, 1(01), 676–86.

Lützkendorf, T and Frischknecht, R (2020) (Net-) zero-emission buildings: a typology of terms and definitions. Buildings and Cities, 1(01), 662–75.

Mayer, M (2020) Material recovery certification for construction workers. Buildings and Cities, 1(01), 550–64.

Parkin, A, Herrera, M and Coley, D A (2020) Net-zero buildings: when carbon and energy metrics diverge. Buildings and Cities, 1(01), 86–99.

Passe, U (2020) A design workflow for integrating performance into architectural education. Buildings and Cities, 1(01), 565–78.

Passe, U, Dorneich, M, Krejci, C, Koupaei, D M, Marmur, B, Shenk, L, Stonewall, J, Thompson, J and Zhou, Y (2020) An urban modelling framework for climate resilience in low-resource neighbourhoods. Buildings and Cities, 1(01), 453–74.

Patrick, M, Grewal, G, Chelagat, W and Shannon, G (2020) Planetary health justice: feminist approaches to building in rural Kenya. Buildings and Cities, 1(01), 308–24.

Roca-Puigròs, M, Billy, R G, Gerber, A, Wäger, P and Müller, D B (2020) Pathways toward a carbon-neutral Swiss residential building stock. Buildings and Cities, 1(01), 579–93.

Salter, J, Lu, Y, Kim, J C, Kellett, R, Girling, C, Inomata, F and Krahn, A (2020) Iterative ‘what-if’ neighborhood simulation: energy and emissions impacts. Buildings and Cities, 1(01), 293–307.

Schünemann, C, Olfert, A, Schiela, D, Gruhler, K and Ortlepp, R (2020) Mitigation and adaptation in multifamily housing: overheating and climate justice. Buildings and Cities, 1(01), 36–55.

Schiller, G, Gruhler, K and Xie, X (2020) Assessing the efficiency of indoor and outdoor access-related infrastructure. Buildings and Cities, 1(01), 56–69.

Schmidt, M, Crawford, R H and Warren-Myers, G (2020) Integrating life-cycle GHG emissions into a building’s economic evaluation. Buildings and Cities, 1(01), 361–78.

Schoenefeldt, H (2020) Delivery of occupant satisfaction in the House of Commons, 1950–2019. Buildings and Cities, 1(01), 141–63.

Simpson, K, Janda, K B and Owen, A (2020) Preparing ‘middle actors’ to deliver zero-carbon building transitions. Buildings and Cities, 1(01), 610–24.

Srivastava, M (2020) Cooperative learning in design studios: a pedagogy for net-positive performance. Buildings and Cities, 1(01), 594–609.

  • Type: Journal Article
  • Keywords: architects; climate change; design studio; education; energy; pedagogy; retrofit; zero carbon;
  • ISBN/ISSN: 2632-6655
  • URL: https://doi.org/10.5334/bc.45
  • Abstract:
    Students of architecture are often inadequately prepared to address the consequences of climate change. Among the factors contributing to this, traditional design studio pedagogies tend to privilege individual ownership of projects instead of promoting cooperation and collaboration. This traditional focus on individual projects has the effect of minimizing the cognitive diversity that can be brought to bear within the development of projects, and that new knowledge is created through interactive processes based on the sharing and integration of previously unshared knowledge. A new studio pedagogy is presented in which cognitive diversity is foregrounded by means of shifting away from individual ownership of work and towards groupings of works and students. Periodic discussions focus on works grouped by thematic commonalities and re-assigned ownership based on interest, self-identified strengths (skills they can contribute or teach), or deficits (skills they need to learn), rather than authorship. Evidence from implementation reveals this process supports the creation of new knowledge in a short period of time (a 6.5-week studio) and students learn skills related to quantification of performance measures and develop capabilities to transform existing buildings to be net-positive contributors to their communities. Practice relevance The presented pedagogical method, entitled ‘Shifting Allegiances,’ is easy to replicate and flexible for customization. It does not require larger curricular or program changes and is not bound to specific content. It can be implemented by an individual instructor in a single studio section. An emphasis on shared student authorship, cooperative structures, and collaboration led to a learning process based on productive comparisons of student work. Comparisons in students’ energy modeling results due to in-depth knowledge of, and participation in, their colleagues’ work became second nature to the students. This led to the acquisition of new capabilities enabling students to use a variety of strategies to achieve a 70% reduction in energy demand over the current baseline; this was augmented further with the use of photovoltaics. Other aspects (water, waste, resources), selected by the students are also actively reduced to meet net-zero goals.

Steadman, P, Evans, S, Liddiard, R, Godoy-Shimizu, D, Ruyssevelt, P and Humphrey, D (2020) Building stock energy modelling in the UK: the 3DStock method and the London Building Stock Model. Buildings and Cities, 1(01), 100–19.

Steininger, K W, Meyer, L, Nabernegg, S and Kirchengast, G (2020) Sectoral carbon budgets as an evaluation framework for the built environment. Buildings and Cities, 1(01), 337–60.

Stevenson, F and Kwok, A (2020) Mainstreaming zero carbon: lessons for built-environment education and training. Buildings and Cities, 1(01), 687–96.

Tanguy, A, Breton, C, Blanchet, P and Amor, B (2020) Characterising the development trends driving sustainable neighborhoods. Buildings and Cities, 1(01), 164–81.

Waldman, B, Huang, M and Simonen, K (2020) Embodied carbon in construction materials: a framework for quantifying data quality in EPDs. Buildings and Cities, 1(01), 625–36.

Willand, N, Moore, T, Horne, R and Robertson, S (2020) Retrofit Poverty: Socioeconomic Spatial Disparities in Retrofit Subsidies Uptake. Buildings and Cities, 1(01), 14–35.